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Abstract

Accurate representation of the multiscale features in spatiotemporal physical systems using
vision transformer (ViT) architectures requires extremely long, computationally prohibitive
token sequences. To address this issue, we propose two novel adaptive tokenization schemes
that dynamically adjust patch sizes based on local features: one ensures convergent be-
havior to uniform patch refinement, while the other offers better computational efficiency.
Moreover, we present a set of spatiotemporal attention schemes, where the temporal or
axial spatial dimensions are decoupled, to evaluate their baseline computational and data
efficiencies and to determine whether adaptive tokenization can improve this performance.
We assess the performance of the proposed multiscale adaptive model, MATEY, in a se-
quence of experiments. Compared to a full spatiotemporal attention scheme or a scheme
that decouples only the temporal dimension, we find that fully decoupled axial attention is
less efficient and expressive, requiring more training time and model parameters to achieve
the same accuracy. The experiments on the adaptive tokenization schemes show that, com-
pared to a uniformly refined model, the proposed schemes achieve comparable or improved
accuracy at a much lower cost. Finally, we demonstrat e in two fine-tuning tasks featuring
different physics that models pretrained on PDEBench data outperform the ones trained
from scratch, especially in the low data regime with frozen attention.

1 Introduction

Developing foundation models for physical systems is vital for energy generation, earth sciences, and power
and propulsion systems. These models offer faster solutions than physics-based simulations and can generalize
better across multiple systems than single-purpose AI approaches. However, their application to physical
systems, often characterized by multiple sub-processes at different scales, is still in the early stages. For
instance, fluid flowing around a cylinder creates a von Kármán vortex street, a highly dynamic flow with
rapidly evolving vortices. Accurate solutions of such multiscale systems require a very high resolution
representation to capture the most complex features across space and time. However, for scientific machine
learning as for modeling and simulation, using very high resolutions to achieve accurate solutions incurs
significant computational cost. This is particularly true for developing foundation models using vision
transformer (ViT)-based architectures, as using the standard self-attention mechanism for extremely long
spatiotemporal sequences can become prohibitively computationally expensive.

Efficient representation of multiscale features in high-resolution inputs has been an active research topic
in computer vision. Three broad approaches can be characterized. First, multiscale models like Swin
Transformer (Liu et al., 2021) and MViTv2 (Li et al., 2022) introduce multiple stages with decreasing
resolution and increasing feature dimension for efficient hierarchical representations. Second, computational
techniques have been developed that facilitate training on long sequences (e.g., sequence parallelism across
GPUs (Jacobs et al., 2023)) or reduce the effective sequence length in the attention kernel (e.g., decomposing
attention along axial directions (Ho et al., 2019)). Third, the actual sequence length can be directly shortened
by pruning and merging tokens ((Haurum et al., 2023; Meng et al., 2022; Yin et al., 2022; Bolya & Hoffman,
2023)), though this strategy may lead to critical information loss (Liu et al., 2024).
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These techniques have recently been adopted in scientific machine learning (SciML) for physical systems.
For example, the atmosphere foundation model Aurora (Bodnar et al., 2024) uses Swin Transformer, while
axial attention is applied by MPP (McCabe et al., 2023). Despite the progress, computational constraints
remain a bottleneck, as existing approaches do not yet handle high-fidelity solutions of applications such as
computational fluid dynamics, in which input sequences can easily exceed billions of tokens. More efficient
algorithms are needed to enable the development of foundation models for multiscale multiphysics systems.

In this work, we develop a multiscale adaptive foundation model, MATEY (see Figure 1), that provides
two key algorithmicthree contributions to address the challenges posed by spatiotemporal physical systems.
First, we present a set of spatiotemporal attention schemes based on the axial attention (Ho et al., 2019) that
differ in their decomposition of long spatiotemporal sequences and establish the cost in time-to-accuracy for
decoupled spatiotemporal attention. Second, inspired by the adaptive mesh refinement (AMR) technique,
we introduce adaptive tokenization methods that dynamically adjust patch sizes across the system based on
local features, which provides as much as a 2ˆ reduction in compute for similar or higher accuracy, depending
on the spatiotemporal attention scheme. Finally, we assess the fine-tuning performance of models pretrained
on PDEBench (Takamoto et al., 2022) in two highly out-of-distribution settings, colliding thermals and
magnetohydrodynamics (MHD), that include additional physical variables not included in pretraining and
observe the pretrained models outperforming randomly initialized models.

2 Related work

Scientific foundation models Several research directions have been explored for building foundation
models for physical systems, including MPP (McCabe et al., 2023) with PDEBench data, input augmentation
with PDE system configurations (Hang et al., 2024), robust pretraining schemes (Hao et al., 2024), fine-tuning
effectiveness investigations (Subramanian et al., 2024), and data-efficient multiscale ViT architectures (Herde
et al., 2024). While these studies made remarkable progress, they do not directly address the issue of token
sequence length, which becomes a computation bottleneck when applying ViTs to high dimension or high
resolution data.

Multiscale ViTs While most multiscale ViTs achieve hierarchical representations via multi-stage attention
blocks at different resolutions (e.g., MViTv2 (Li et al., 2022) and Swin Transformer (Liu et al., 2021)), there
are a few focusing on tokenization schemes, such as (Yin et al., 2022; Fan et al., 2024; Zhang et al., 2024;
Havtorn et al., 2023). A-ViT (Yin et al., 2022) improves efficiency for inference by removing unimportant
tokens at inference; however, as these models still need to be trained on full set of tokens, it does not reduce
training cost. The single-stage MSViT with dynamic mixed-scale tokenization (Havtorn et al., 2023) is
the method most closely related to ours. MSViT employs a gating neural network (NN) to select which
tokens to refine, together with an additional generalized batch-shaping loss (GBaS) term that constrains the
computational cost (Bejnordi et al., 2020; Havtorn et al., 2023). However, in physical systems, we often have
domain knowledge pinpointing areas of importance (e.g., interfaces of multiphase flows and flame fronts in
combustion) with clear physical indicators, which the gating NN may not reliably capture. Moreover, its
convergence speed and associated training cost are sensitive to the initialization of weights; e.g., the initial
bias in MSViT was set to refine all tokens in (Havtorn et al., 2023). By contrast, the adaptive tokenization
scheme in MATEY directly adjusts the patch sizes based on local feature scales, offering a simpler and more
effective way to focus on areas of interest.

Axial attentions The quadratic scaling nature of attention makes it computationally prohibitive for
extremely long token sequences from multidimensional systems. To address this challenge, (Ho et al., 2019)
proposed the axial attention, which decomposes the full attention into a sequence of attention operations
along each axis. It reduces the attention cost from OpN2dq to OpNd`1q, for a given d-dimensional system with
Nd tokens. ViViT (Arnab et al., 2021) factorized the spatiotemporal attention into spatial- and temporal-
dimensions for video classification. (McCabe et al., 2023) applied the axial attention in the Axial ViT (AViT)
for spatiotemporal solutions of physical systems. While these spatiotemporal attention schemes can reduce
the sequence length and hence the attention cost, their impact on accuracy in physical systems and on the
performance of techniques like mixed-scale tokenization is unclear.
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3 Methods

We propose multiscale adaptive foundation models, MATEY, to predict two-dimensional spatiotemporal so-
lutions of multiple physical systems. The architecture of MATEY is illustrated in Figure 1. Given a sequence
of T past solutions of some physical system leading up to time t, MATEY predicts the solution at a future
time t ` tlead by learning from sequences of solutions for multiple physical systems. Specifically, MATEY
learns a model fw such that ut`tlead « fwput´T `1, . . . , ut; tleadq by training parameters w to minimize the
loss of the prediction from the solution sequence U “ rut´T `1, . . . , uts against the future solution with a
lead time ut`tlead . In the following paragraphs, we give detailed descriptions for each component in MATEY.
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Figure 1: MATEY: multiscale adaptive foundation models for spatiotemporal physical systems.

3.1 Approach and architecture

Multi-physics preprocessor, postprocessor, and training To accommodate multiple physical sys-
tems with different sets of variables at different spatial resolutions, we adopt the multi-physics preprocessor
and postprocessor used in MPP (McCabe et al., 2023). For system k with Ck variables, the preprocessor
first encodes solutions utpx, yq P RCk to a latent space RCuni , where Cuni " Ck is shared among all systems.
Specifically, letting H and W denote the resolution in the x and y directions, respectively, the preprocessor
encodes the solution Uk P RT ˆHˆW ˆCk of system k into the unified latent representation U P RT ˆHˆW ˆCuni .
U is then tokenized into sequences Z0 P RntˆnpxˆnpyˆCemb in the tokenization module, which consists of
convolutional blocks. Here nt “ T {pt, npx “ H{px, and npy “ W {py are the number of patches in each
dimension with prescribed patch size rpt, px, pys. After passing through L attention blocks, the input token
sequence Z0 leads to the attention output ZL P RntˆnpxˆnpyˆCemb . The last temporal snapshot of ZL is
then decoded in the postprocessor into the prediction upred P RHˆW ˆCk . In this work, the preprocessor
is a linear map, the tokenization module is implemented as a convolutional block, and the final decoding
postprocessor uses 2D transposed convolutional blocks. To train the model from solutions with different res-
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olutions, we follow the approach in MPP by performing system-based sampling in the training process and
fusing information from samples across different systems via multi-GPU training with PyTorch Distributed
Data Parallelism (DDP) and gradient accumulation.

Attention mechanisms — AViT, SViT, and ViT The standard ViT attention mechanism takes into
account the attention across the entire set of spatiotemporal dimensions, which results in a high attention
cost when extremely long spatiotemporal token sequences (e.g., from high-resolution spatiotemporal data)
are considered. To address this issue, various factorized attention mechanisms have been proposed, such as
AViT (Ho et al., 2019; McCabe et al., 2023) and a spatio-temporal decoupled attention (Arnab et al., 2021),
referred to as SViT here. These attention mechanisms mainly consist of the same multihead self-attention
(MHSA) and feed forward multi-layer perceptron (MLP) but differ in their attention block architecture.
When L attention blocks are cascaded, the standard attention block in ViT is given as

pZ0 “ Z0 ` Epos, Z0 “ rz0
1 , z0

2 , . . . , z0
N s,

Z1 “ MLPp rZ1q ` rZ1, rZ1 “ MHSAp pZ0q ` pZ0 ` MLPptleadq,

Zℓ “ MLPp rZℓq ` rZℓ, rZℓ “ MHSApZℓ´1q ` Zℓ´1, ℓ “ 2, . . . , L

(1)

where rz0
1 , . . . , z0

N s denotes the full spatiotemporal token sequence of length N with each token z0
i P RCemb ,

Epos is a positional embedding term, and each MHSA and MLP is followed by an InstanceNorm1d module.
In ViT, the token sequence includes all spatiotemporal patches, meaning N “ nt ¨ npx ¨ npy, resulting in
an overwhelming cost of Oppnt ¨ npx ¨ npyq2q operations for attention. In contrast, SViT decouples the
attention into npx ¨ npy time-attention blocks and nt space-attention blocks cascaded sequentially, as in
“MHSAtime Ñ MHSAspace Ñ MLP”,

Time sequences: Zℓ´1
i “

”

zℓ´1
pi´1q¨nt`1, zℓ´1

pi´1q¨nt`2, . . . , zℓ´1
pi´1q¨nt`nt

ı

, i “ 1, . . . , npx ¨ npy

Attention in time: Z
ℓ´ 1

2
i “ MHSAtime

`

Zℓ´1
i

˘

` Zℓ´1
i , i “ 1, . . . , npx ¨ npy

Space sequences: qZ
ℓ´ 1

2
t “

”

z
ℓ´ 1

2
t , z

ℓ´ 1
2

t`nt, . . . , z
ℓ´ 1

2
t`nt¨pnpx¨npy´1q

ı

, t “ 1, . . . , nt,

Attention in space: rZℓ
t “ MHSAspace

´

qZ
ℓ´ 1

2
t

¯

` qZ
ℓ´ 1

2
t , t “ 1, . . . , nt,

Feed forward ML: Zℓ “ MLP
´

rZℓ
¯

` rZℓ, ℓ “ 1, . . . , L,

(2)

which reduces the MHSA cost to npx¨npy ¨Opnt2q`nt¨Oppnpx¨npyq2q. The position embedding and the lead
time MLP are omitted in (2) for simplicity. AViT further decomposes the space-attention in SViT into two
axial directions following the same approach, which leads to a cost of npx ¨ npy ¨ Opnt2q ` nt ¨ npy ¨ Opnpx2q `

nt ¨ npx ¨ Opnpy2q. The decomposition in both AViT and SViT neglects some spatiotemporal correlations,
and thus gives shorter token sequence length for each attention block, at the cost of introducing additional
attention blocks. These extra attention blocks moderately increase the model size, as shown in Table 1. Note
that within the same size category considered in Table 1, AViT and SViT are larger than ViT due to the
additional MHSA, while AViT and SViT have similar sizes because AViT reuses the same attention blocks
for different spatial directions. In MATEY, we implement the three attention mechanisms – AViT, SViT,
and ViT – and evaluate their performance on test problems to study how the lost spatiotemporal correlations
affect the quality of the solution and to assess the impact of decoupled attentions with additional attention
blocks on the learning efficiency for multi-physics foundation models.

Pretraining and fine-tuning We pretrain the models on PDEBench data, which includes five basic 2D
systems: incompressible flows, compressible flows, turbulent flows, reaction-diffusion systems, and shallow
water equations. We consider two fine-tuning cases: 1) colliding thermals between a cold and a warm bubbles
from MiniWeather simulations (Norman, 2020) and 2) lid-driven cavity MHD flows (Fambri et al., 2023). We
will release the two datasets upon paper publication. As discussed in detail in Appendix A.1, these fine-tuning
datasets were selected to be meaningfully out-of-distribution, not only in flow regime but also in including
thermal and electromagnetic components that are not represented at all in the pretraining data. Training
was performed on the Frontier and Perlmutter supercomputers at the Oak Ridge Leadership Computing
Facility (OLCF) and National Energy Research Scientific Computing Center (NERSC), respectively.
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3.2 Adaptive tokenization methods

Smaller patch sizes are preferred for better representation accuracy, as ViTs can capture long-range correla-
tions between patches well but lack inductive biases within patches. However, features in physical systems
often cross multiple length scales and exhibit strong spatiotemporal inhomogeneities, such as mixing layers
in ocean flows, interfaces in multiphase flows, and reaction fronts in reacting flows. Consequently, constant
patch sizes that are small enough to provide good accuracy in the necessary regions of such systems result
in impractically long token sequence lengths over the entire domain. To address this issue, we propose an
adaptive ViT that dynamically adjusts the tokenization patch sizes according to local physical features.
To maximize expressiveness, we start with coarse patching and identify the most complex patches in each
sample based on a simple metric, such as the variance of local features. The identified patches are further
refined to the sub-token-scale (STS) to improve representation accuracy. Adaptive patch size leads to patches
of varying length across samples, which are handled with padding masks. Patch position and patch area
bias are represented following the embedding method in (Bodnar et al., 2024). For simplicity, we describe
the method using notations with two token-scale levels; however, the method generalizes naturally to any
number of levels.

For a given solution field ut P RHˆW ˆC , tokenization at a constant patch size rpx, pys is achieved through a
convolutional block and leads to a patch grid of size pnpx, npyq “ pH{px, W {pyq. For adaptive tokenization,
we apply varying patch sizes in space based on local complexity represented by the patch variance. For
a solution ut P RHˆW ˆC and an initial coarse patch size rpx1 , py1 s, a variance tensor vt P Rnpx1ˆnpy1

(npx1 “ H{px1 and npy1 “ W {py1) is calculated from solutions inside each patch of the reshaped solution
rut P Rnpx1ˆnpy1ˆpx1 ˆpy1 ˆC as

vtpi, jq “
1

C ¨ px1 ¨ py1

C
ÿ

c“1

px1
ÿ

k“1

py1
ÿ

l“1

˜

rutpi, j, k, l, cq ´
1

px1 ¨ py1

px1
ÿ

k“1

py1
ÿ

l“1
rutpi, j, k, l, cq

¸2

, (3)

where (i, j) denotes the patch’s coordinate on the npx1 ˆ npy1 grid. Patches with variance values greater
than a prescribed threshold are then selected for further refinement at a smaller patch size. Specifically, let
STS-IDs denote the index set of patches to be refined, then

STS-IDs :“ tpi, jq|vtpi, jq ą γsts ¨ vt,maxu, Nsts :“ |STS-IDs|, (4)

where γsts P r0, 1s is a user-specified hyperparameter, vt,max is the maximal variance among all patches, and
Nsts is the number of patches to be refined. The selected patches are refined to patches of a smaller size
rpxsts , pysts s, referred to as “STS tokens” in this work, where Z0

sts,i “

”

z0
sts,1, z0

sts,2, . . . , z0
sts,px1 {pxsts ˆpy1 {pysts

ı

i
(i “ 1, . . . , Nsts). The STS tokens can be combined with the coarse tokens in two ways, as shown in Figure
2. In the first approach, referred to as “Adap_Mul” (for adaptive multi-resolution tokenization), we consider
the coarse and STS tokens as separate sequences, passing through the attention blocks serially. In the second
approach, referred to as “Adap_Mix” (for adaptive mixed-resolution tokenization), we replace the selected
coarse patches with the sequence of STS tokens directly appended to the end of the sequence.

After spatiotemporal attention, the decoding of adaptive patch sequences into solution fields within the multi-
physics postprocessor is performed using transposed convolutional blocks, tailored to each corresponding
scale. For Adap_Mul, the patches at different resolutions/sizes are deconvoluted separately and then summed
to the final output, put. Specifically, for a coarse attention output ZL

coarse “
“

zL
1 , zL

2 , . . . , zL
npx1ˆnpy1

‰

and STS
attention outputs ZL

sts,i “

”

zL
sts,1, zL

sts,2, . . . , zL
sts,px1 {pxsts ˆpy1 {pysts

ı

i
(i “ 1, . . . , Nsts), “Adap_Mul” performs

the following operations:

Reconstruction from coarse patches: put “ ConvTranspose2d1pZL
coarseq,

Reconstruction from STS patches: put,sts,i “ ConvTranspose2d2pZL
sts,iq

put,sts “ rput,sts,1, . . . , put,sts,Nsts s

Fusion of multi-resolution solutions: putrSTS-IDss “ putrSTS-IDss ` put,sts.

(5)
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Figure 2: Adaptive tokenization that dynamically adjusts patch sizes based on local features. There are
three essential parameters: rpx1 , py1 s, rpxsts , pysts s and γsts. The parameter rpx1 , py1 s denotes the initial
coarse patch size, rpxsts , pysts s represents the refined patch size, and γsts P r0, 1s determines which patches
to refine. We select patches with local variances greater than γsts times the maximum variance across all
patches (see Equation (4)).

On the other hand, the Adap_Mix approach fuses the coarse and STS patch sequences into the full sequences
at the coarse and fine STS scales, respectively, reconstructs the solutions via transposed convolutions at
corresponding resolutions separately, and then merges them to achieve multi-resolution solutions. This
approach guarantees consistency with the coarse patch solution when γsts “ 1.0 (no refinement) and the
fine patch solution when γsts “ 0.0 (refining all patches). Let Z 1L

coarse “ rzL
1 , zL

2 , . . . , zL
npx1ˆnpy1´Nsts

s P

Rpnpx1ˆnpy1´NstsqˆCemb denote the coarse portion of the mixed-resolution attention output, and let ZL
sts,i “

rzL
1 , zL

2 , . . . , zL
px1 {pxsts ˆpy1 {pysts

si (i “ 1, . . . , Nsts) denote the STS portion. Adap_Mix performs the following
operations:

1. Reconstruct the full coarse patches ZL
coarse P Rnpx1ˆnpy1ˆCemb via

ZL
coarserKep-IDss “ Z 1L

coarse,

ZL
coarserSTS-IDss “ rMeanpZL

sts,1q, MeanpZL
sts,2q, . . . , MeanpZL

sts,Nsts
qs,

(6)

where Kep-IDs is the complementary indexing tensor to STS-IDs, representing all coarse patches
kept in the sequence.

2. Reconstruct the full fine patches ZL
fine P RH{pxsts ˆW {pysts ˆCemb via

Z 1L
finerSTS-IDs, :, :s “ rZL

sts,1, ZL
sts,2, . . . , ZL

sts,Nsts
s,

Z 1L
finerKep-IDs, :, :s “ repeat

`

Z 1L
coarse, px1 {pxsts ˆ py1 {pysts

˘

,

ZL
fine “ reshape

`

Z 1L
fine

˘

.

(7)

where Z 1L
fine P Rpnpx1ˆnpy1qˆppx1 {pxsts ˆpy1 {pysts qˆCemb is an intermediate supporting tensor.

3. Reconstruct solution fields put,coarse P RHˆW ˆC and put,fine P RHˆW ˆC from coarse patches and fine
patches, respectively:

put,coarse “ ConvTranspose2d1pZL
coarseq, put,fine “ ConvTranspose2d2pZL

fineq. (8)

4. Fusion of solutions from step 3 to get the multi-resolution solution fields put P RHˆW ˆC :

putrKep-IDss “ put,coarserKep-IDss, putrSTS-IDss “ put,finerSTS-IDss. (9)
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Among the two adaptive approaches, Adap_Mul is simpler to implement, requiring minimal code modifi-
cations, supports the AViT attention mechanism, and does not increase the maximum sequence lengths.
In contrast, Adap_Mix produces relatively longer sequences and lacks AViT support but has the potential
significant benefit of better capturing cross-scale correlations than the decoupled Adap_Mul. Furthermore,
by varying γsts from 1.0 to 0.0, Adap_Mix guarantees a smooth transition from the coarse patch solution at
rpx1 , py1 s to the fine patch solution at rpxsts , pysts s (see Figure 5).

Adap_Mix and MSViT (Havtorn et al., 2023) are both mixed-scale tokenization methods, but they differ in
that Adap_Mix refines patches directly based on the variance of input data, rather than relying on an auxiliary
NN and potentially unknown prior distributions. As a result, it is easier to implement, more effective (see
Section 4.2), and also more extensible, since the variance indicator can be swapped out by other physical
indicators. Moreover, while MSViT’s combination of coarse and refined tokens in attention is broadly
analogous to Adap_Mix, they do not consider the potentially more computationally efficient Adap_Mul.

4 Experiments

We design three experiments to evaluate 1) the baseline performance of three spatiotemporal attention
schemes (AViT, SViT, and ViT) using constant uniform tokenization, 2) the impact of adaptive tokenization
on each spatiotemporal attention scheme, and 3) the effectiveness of pretrained models on two fine-tuning
tasks that feature physics different from the pretraining data. In these experiments, we set pt “ 1 and
Cuni “ Cemb{4, and employ square patches (i.e., px “ py, px1 “ py1 , and pxsts “ pysts) by default.

4.1 Spatiotemporal attention schemes

We evaluate AViT, SViT, and ViT for three model sizes: Tiny (Ti), Small (S), and Base (B) with 3, 6,
12 heads and hidden dimension Cemb “ 192, 384, and 768, respectively (Touvron et al., 2022), as shown
in Table 1, on the colliding thermals dataset. In the same size category, AViT and SViT are about 30%
larger than ViT due to the additional attention block. More details about the experiment are presented in
Appendix A.2.

Tiny Small Base
AViT 7.5M 29.9M 119.3M
SViT 7.6M 30.0M 119.3M
ViT 5.8M 22.8M 90.9M

Table 1: Number of model parameters in AViT, SViT, and
ViT for three model sizes, Tiny, Small, and Base, detailed in
Section 4.1. ViT results in about 30% fewer model param-
eters than AViT and SViT because the latter two require
additional attention blocks.
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Figure 3: Learning efficiency of AViT, SViT, and ViT at three model sizes regarding final predictive error
and training time cost: SViT and ViT are observed to be more expressive and computationally efficient than
AViT in the experiment, as they require fewer model parameters and less training time to achieve the same
test accuracy.
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Figure 3 compares the final test error, defined as the normalized root-mean-square error (NRMSE), and the
training time, represented as GPU hour per step, for the nine models. For the same size category, SViT
(green) achieves the lowest error, followed by ViT (magenta), and then AViT (red-orange). In terms of
training time, SViT takes longer than AViT, while ViT is the least expensive. ViT processes longer token
sequences and hence is expected to have a higher single-unit attention cost, whereas AViT and SViT have
multiple attention units with shorter token sequence lengths. The results reported in Figure 3 show that
the ViT has the lowest cost, which implies that the number of attention blocks plays a more important role
than the token sequence length in terms of training cost in this example. This observation is due to the fact
that the spatiotemporal token sequence length (16 ˆ 8 ˆ 8) in this example is relatively short. We expect
ViT to become more expensive than AViT and SViT when more refined or higher dimensional solutions are
considered, in which longer token sequences are required.

In general, we find that SViTs and ViTs are more expressive and computationally efficient than AViTs, in
that they achieve the lower predictive errors with fewer model parameters and less training time in relatively
short token sequences. These baseline results provide several insights for our adaptive tokenization approach
and experimental design in the subsequent section. First, as the primary drawback of SViT and ViT is
the expected increase in compute required for longer sequence lengths, potential length reductions from
adaptive tokenization would be more impactful for these two schemes. Moreover, such a reduction would
be most significant computationally if it were to minimize any increases in the attention operations that
scale quadratically with sequence lengths. Second, as the relative behavior of the three attention schemes
is consistent across the three model sizes considered, we can select the smallest model for the adaptive
tokenization experiments. Third, the lower expressiveness of the fully decoupled AViT suggests that the
coupling between the coarse and refined tokens in an adaptive tokenization scheme may also have trade-offs
between computational efficiency and expressiveness.

4.2 Adaptive tokenization

We start the evaluation of our adaptive tokenization methods in a single collision trajectory between two
thermal bubbles. Figure 4 compares the temperature contours of the true solution at t “ 590 with the
predicted solutions from Ti-SViT models at constant patch sizes, ps=16 ˆ 16 and ps=32 ˆ 32, and adaptive
tokenization (Adap_Mul with px1 “ py1 “ 32, pxsts “ pysts “ 16 , and γsts “ 0.2). The predicted solution
from ps=32 ˆ 32 exhibits abrupt changes with clear edges for the local structures inside the patches, while
the finer resolution model at ps=16ˆ16 captures smoother, finer structures but requires many more patches.
In contrast, our adaptive tokenization methods capture smooth, fine structures comparable to ps=16 ˆ 16
while requiring much shorter sequences.

True at t = 590 ps=16 × 16 ps=32 × 32 Adap_Mul, sts = 0.2

279
284
289
294
299
304
309
314
319

Figure 4: Predicted temperature contours at t “ 590 from Ti-SViT models with constant patch sizes
ps=16 ˆ 16 and ps=32 ˆ 32 and adaptive tokenization (Adap_Mul with px1 “ py1 “ 32, pxsts “ pysts “ 16,
and γsts “ 0.2). Adap_Mul predicts smoother, finer local structures that are overlooked in ps=32ˆ32, similar
to the more expensive ps=16 ˆ 16.

Next, we evaluate the two adaptive tokenization methods, Adap_Mix and Adap_Mul, across the three attention
schemes. We begin with a single collision trajectory between two thermal bubbles for efficient hyperparameter
sweeps, then compare Adap_Mix with MSViT using a gating-NN-controlled mixed-scale tokenization, and
finally demonstrate the generalizability of our adaptive tokenization methods on 576 trajectories with varying
bubble locations and intensities.
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Adap_Mix in ViT and SViT Adap_Mix with (px1 , pxsts , γsts) is designed to ensure convergence in γsts
values. When γsts Ñ 1, no refinement is conducted and the output is converged to ps=px1 ˆpx1 . Conversely,
when γsts Ñ 0, all patches are refined and the output is converged to ps=pxsts ˆ pxsts . To examine such
convergence behavior, we conduct a set of runs with varying (px1 , pxsts , γsts) values, together with runs at
constant patch sizes, ps=32ˆ32, ps=16ˆ16, and ps=8ˆ8. Figure 5 shows the final NRMSE test loss versus
the average sequence length of patches per time step, Lavg,mix. For a given trajectory of spatiotemporal
solutions with T steps, the average sequence length is defined as

Lavg,mix “
1
T

T
ÿ

t“1
Lt “

1
T

T
ÿ

t“1

„

pnpx1 ¨ npy1 ´ Nsts,tq ` Nsts,t ¨

ˆ

px1

pxsts

¨
py1

pysts

˙ȷ

, (10)

where Lt represents the length of the mixed patch sequence and Nsts,t is the number of patches selected
for refinement based on Equation (4) at time t. Clearly, the predictive error of Adap_Mix evolves from the
corresponding coarse patch results of ps=px1 ˆ px1 to ps=pxsts ˆ pxsts when γsts varying from 1.0 to 0.0, in
two settings (px1 “ 32, pxsts “ 16) and (px1 “ 16, pxsts “ 8) and for both ViT and SViT. More interestingly,
Adap_Mix at some γsts values even achieves a lower predictive error than the fine patch case ps=pxsts ˆ pxsts

with a much shorter sequence length (e.g., with 2ˆ reduction), clearly indicating the advantages of the
adaptive tokenization approach.
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Figure 5: Final NRMSE for Tiny ViT (left) and SViT (right) with adaptive tokenization — Adap_Mix
with hyperparameters (px1 , pxsts , γsts)— and constant patch sizes against average sequence length, Lavg,mix
(Equation (10)). Error bars, representing standard deviations from 3 runs, are shown for ViT. Adap_Mix
with γsts varying from 1.0 to 0.0 shows a clear convergent transition from the coarse constant patch size
ps=px1 ˆ py1 to the fine constant patch size ps=pxsts ˆ pysts . More interestingly, Adap_Mix is shown to
achieve lower prediction errors than the more expensive ps=pxsts ˆ pysts cases despite requiring only half of
the average sequence length. Corresponding numbers are reported in Table A1.

Adap_Mul in ViT, SViT, and AViT In contrast to Adap_Mix, which combines the coarse and locally
refined patches into a hybrid sequence that is fed into attention blocks together, Adap_Mul treats the two, i.e.,
ZL

coarse “
“

zL
1 , zL

2 , . . . , zL
npx1ˆnpy1

‰

and ZL
sts,i “

”

zL
sts,1, zL

sts,2, . . . , zL
sts,px1 {pxsts ˆpy1 {pysts

ı

i
(i “ 1, . . . , Nsts),

separately. Adap_Mul maintains this separation for both attention and solution reconstruction and views
the reconstructed solutions from the refined patches as a local STS correction. The computing cost scales
either linearly for MLP or quadratically for attention with sequence length in various model components.
To represent the cost, we define the linear and quadratic indices for ViT and SViT as in

Llin “
1
T

T
ÿ

t“1
Lt “

1
T

T
ÿ

t“1

„

npx1 ¨ npy1 ` Nsts,t ¨

ˆ

px1

pxsts

¨
py1

pysts

˙ȷ

,

Lquad “
1
T

T
ÿ

t“1
Lquad,t “

1
T

T
ÿ

t“1

«

pnpx1 ¨ npy1q
2

` Nsts,t ¨

ˆ

px1

pxsts

¨
py1

pysts

˙2
ff

.

(11)

For AViT, the index Lquad needs to be adjusted as

Lquad “
1
T

T
ÿ

t“1

«

`

npx2
1 ¨ npy1 ` npx1 ¨ npy2

1
˘

` Nsts,t ¨

„ ˆ

px1

pxsts

˙2
¨

py1

pysts

`
px1

pxsts

¨

ˆ

py1

pysts

˙2 ȷ

ff

. (12)
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Figure 6 shows the final test NRMSE against the cost indices Llin (left) and Lquad (right) of Adap_Mul in
ViT (top) and SViT (bottom) at varying values of (px1 , pxsts , γsts). The results on the left panel confirm
that, as γsts decreases, Adap_Mul refines more aggressively, resulting in lower NRMSE while increasing the
linear cost. However, the plots on the right panel show that Adap_Mul achieves much lower NRMSE at
minimal additional quadratic cost. This observation suggests that Adap_Mul leads to preferable performance
on problems with attention on long sequence, where the quadratic cost is dominant (Touvron et al., 2022).
Figure 7 presents analogous results for Adap_Mul in AViT. Compared with ViT and SViT, the accuracy
improvement in AViT is less pronounced in our experiments with ppx1 , pxsts q “ p32, 16q and p16, 8q (top),
possibly due to the extremely short sequence lengths of 2 in AViT. Notably, significant accuracy gains are
observed when px1 “ 32 and pxsts reduced from 16 to 8 (bottom).
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(a) Adap_Mul in Ti_ViT

(b) Adap_Mul in Ti_SViT

Figure 6: Final NRMSE for Tiny ViT (a) and SViT (b) with adaptive tokenization — Adap_Mul with
hyperparameters (px1 , pxsts , γsts) — and constant patch sizes against linear cost estimation index Llin (left)
and quadratic cost estimation index Lquad (right) (Equation (11)). As γsts reduces from 1.0 to 0.0, Adap_Mul
leads to decreasing NRMSE with increasing linear cost increases, whereas the increment of quadratic cost
remains negligible. Corresponding numbers are reported in Table A2.

Comparing the two approaches for adaptive tokenization, we find that Adap_Mix provides better predictive
accuracy, likely due to considering cross-scale correlations, and guarantees convergence toward the solution
with uniformly refined tokens. In contrast, Adap_Mul is dramatically more cost effective for attention oper-
ations with quadratic complexity and easier to implement than Adap_Mix. AViT does not interact well with
adaptive tokenization approaches when the STS sequence length px1 {pxsts is too short. Decreasing γsts values
generally improves accuracy at a case-dependent computing cost increase. For Adap_Mul, lowering γsts incurs
negligible extra attention cost (the dominate cost for long sequence) but yields substantial accuracy gain;
accordingly, we would recommend γsts Ñ 0. For Adap_Mix, smaller γsts values generate better results but
also faster growing sequence length (while still providing significantly speedup); we would suggest the value
based on computing resources: identifying the sequence length from memory and compute hour limitations
and then working backward to select γsts based on data and the set of patch sizes.

Adap_Mix VS. MSViT To compare Adap_Mix with MSViT, we implemented the gate NN controlled
adaptive tokenization in MSViT (Havtorn et al., 2023) and ran six configurations at three different target
gate sparsity g‹ values (g‹ “ r0.1, 0.5, 0.9s, where 0 represents no refinement and 1 represents full refinement)
and two sets of patch size values, i.e., ppx1 , pxsts q “ rp32, 16q, p16, 8qs. We used the GBaS loss with a
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(a) Adap_Mul in Ti_AViT (px1 = 32, pxsts = 16) and (px1 = 16, pxsts = 8)

(b) Adap_Mul in Ti_AViT (px1 = 32, pxsts = 8)

Figure 7: Final NRMSE for Tiny AViT with adaptive tokenization — Adap_Mul with hyperparameters (px1 ,
pxsts , γsts) — and constant patch sizes against linear cost estimation index Llin (Equation (11)) (left) and
quadratic cost estimation index Lquad (Equation (12)) (right). The axial attention in AViT results in short
attention sequence, and thus the advantage of Adap_Mul is not observed in (a) when ppx1 , pxsts q “ p32, 16q

and p16, 8q. In (b), ppx1 , pxsts q is chosen to be p32, 8q, which increases the ratio between px1 and pxsts from 2
to 4. In this case, Adap_Mul gives substantial NRMSE reduction at a relatively low quadratic cost.

Gaussian hyperprior and a Bernoulli prior following (Havtorn et al., 2023). Figure 8 presents the final test
NRMSE against the average sequence length of patches per time step, Lavg,mix (Equation (10)) for MSViT,
in comparison with Adap_Mix and constant patch sizes from the left subplot of Figure 5. The results show
that Adap_Mix (circles) is more efficient than MSViT (stars), achieving better accuracy with shorter sequence
lengths. This efficiency is due to Adap_Mix directly selecting patch refinement based on input data, whereas
MSViT relies on a gating NN jointly trained with the model. The gate begins with an initial condition that
refines all patches (i.e., high initial Lavg,mix values). During training, MSViT operates with longer sequence
length until the gating NN converges, which occurs after the convergence of the hyperprior distribution. We
omit a direct comparison between Adap_Mul and MSViT for the same reason that Adap_Mul and Adap_Mix
are plotted separately; they are fundamentally two different approaches—Adap_Mul treats tokens at different
scales separately in a much more computational efficient way, while MSViT shares more similarities with
Adap_Mix.

Adap_Mix and Adap_Mul in multiple trajectories To evaluate the generalizability, we employed 576 col-
lision trajectories—512 for training and 64 for testing—each spanning 1001 time steps (see Appendix A.1.1).
Due to computational cost, we focused on γsts P r0.1, 0.2, 0.4, 0.8s), drawn from the single-trajectory experi-
ments in Figures 5, 6, and 7. Figure 9 shows the final NRMSE of Adap_Mix in ViT (left) and SViT (right)
against the average sequence length, alongside constant patch-size baselines. As γ decreases from 0.8 to
0.1, NRMSE steadily decreases, consistent with Figure 5. Figure 10 presents analogous results of Adap_Mul,
again matching the single-trajectory results in Figures 6 and 7. These findings confirm that both adaptive
algorithms generalize effectively to complex, spatially and temporally inhomogeneous trajectories.
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Figure 8: Final NRMSE for Adap_Mix and MSViT (Havtorn et al., 2023) in Tiny ViT against average
sequence length, Lavg,mix (Equation (10)). The results of Adap_Mix and constant patch sizes are the same
as in the left subplot of Figure 5. Star symbols represent MSViT results. The sequence length is collected
during training, for which the gate loss history is shown in A7. Adap_Mix is observed to be more efficient than
MSViT, achieving higher accuracy with shorter sequences. This is because Adap_Mix refines patches directly
based on input data, while MSViT uses a jointly trained gating NN that initially refines all patches (hence
high Lavg,mix values). Thus, MSViT runs with longer sequences during training until the gate converges,
which happens after the hyperprior distribution stabilizes. Corresponding MSViT numbers are reported in
Table A3.
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Figure 9: Final NRMSE for Tiny ViT (left) and SViT (right) against average sequence length Lavg,mix
(Equation (10)), comparing Adap_Mix with hyperparameters (px1 , pxsts , γsts) and constant-patch-size base-
lines, trained on multiple collision trajectories. The reduction in error as γsts decreases is consistent with
the single-trajectory results in Figure 5.

4.3 Effectiveness of pretraining in colliding thermals and MHD fine-tuning tasks

We examine the transferrability of pretrained models to fine-tuning systems with distinct physics and different
set of variables, as in Table A4. Specifically, we aim to address three broad questions: (1) Is pretraining
effective when the downstream tasks have a distinct set of physical variables? (2) How does limited fine-
tuning of non-attention blocks compare to full fine-tuning? and (3) How does the amount of fine-tuning
data affect convergence? To address these three questions, we design a sets of experiments, starting from
models pretrained on PDEBench or randomly initialized models (“*_INIT”), and fine-tune them on colliding
thermals and MHD datasets with distinct physical variables. For fine-tuning each model, we either allow all
model parameters to be tunable (“ALL”) or freeze the attention blocks and limit training to the preprocessor,
the tokenization module, and the postprocessor (“PREPOST”). Finally, for each initial model and fine-tuning
configuration, we train four models with increasing amounts of fine-tuning data.

For the colliding thermals dataset, Figure 11 compares the test loss with full and limited fine-tuning using
pretrained and randomly initialized models. The different training data sizes ranging from one set of colliding
thermals time-trajectory to 24 sets of trajectories. The fine-tuning task is to predict the solution of the
physical system at a lead time of tlead uniformly sampled between 1 and 50 steps. An example of the true
and predicted solutions in these four training configurations is illustrated in Figure 12.

For the limited fine-tuning test with the colliding thermals dataset, the pretrained models achieve significantly
lower error than starting from scratch with randomly initialized parameters. Moreover, while this advantage
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Figure 10: Final NRMSE for Tiny ViT (left), SViT (middle), and AViT (right) against the linear cost
estimation index Llin (Equation (11), top row) and the quadratic cost estimation index Lquad (Equation
(12), bottom row). Symbols compare Adap_Mul adaptive tokenization with hyperparameters (px1 , pxsts , γsts)
and constant-patch-size baselines, trained on multiple collision trajectories. The changing trend in error
and cost as γsts decreases again mirrows the single-trajectory results Figures 6 and 7, demonstrating the
generalizability of the adaptive algorithms to spatially and temporally inhomogeneous trajectories.
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Figure 11: NRMSE for test set at different training data sizes in fine-tuning of colliding thermals at a
maximum lead time of 50 steps, with full (“ALL”) and limited (“PREPOST”) fine-tuning using pretrained
and randomly initialized models (“*_INIT”).

persists as the number of fine-tuning data increases, it is most pronounced in the low data configuration
of learning from a single trajectory. Indeed, we find that limited fine-tuning with the pretrained models
generalizes well even when learning from one trajectory, seeing only moderate improvements when run on
the largest dataset size considered. Overall, the lower converged error from pretrained models suggests
the frozen attention blocks clearly learned transferable knowledge during pretraining. For full fine-tuning,
the accuracy is much better than limited fine-tuning as a result of the model being more expressive. The
difference between the pretrained and randomly initialized models is much lower, being minor in the case of
a single data configuration during training and vanishing as the amount of data increases.

For the MHD dataset, Figure 13 shows the final test NRMSE errors in lid-driven cavity flows after fine-
tuning against data sizes when starting from pretrained and randomly initialized models for limited and full
fine-tuning. The training dataset sizes used for fine-tuning range from 1 to 12 simulation configurations,
with each configuration including approximately 1900 samples. The fine-tuning task is to predict the flow
solution at a lead time of tlead uniformly sampled between 1 and 100 steps. Contour plots from the true
solution and the predicted solution from each training configuration are depicted in Figure 14.
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Figure 12: Temperature contours of true solution vs predicted solutions from four fine-tuned models (on 12
trajectories) at t “ 490 from Ti-SViT models for a lead time of 40 in the collision of two thermal bubbles.
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Figure 13: NRMSE for test set at different training data sizes in fine-tuning of lid-driven cavity MHD flows
dataset at a maximum lead time of 100 steps, with full (“ALL”) and limited (“PREPOST”) fine-tuning using
pretrained and randomly initialized models (“*_INIT”).

Overall, the fine-tuning performance is a result of model expressibility, training data size, and the similarity
between training and testing tasks. As with the colliding thermals dataset, pretrained models outperformed
the randomly initialized models for both full and limited fine-tuning runs. However, the reduced expressibility
of the limited fine-tuning configuration consistently shows an accuracy gap, even with more training data, as
they cannot fully represent the data complexity. In contrast, full fine-tuning leads to more expressive models
that can capture all training data information when trained on limited data but often show high test errors;
as more training data is provided, they generalize well and lead to a convergent improved test error. In our
fine-tuning, the randomly initialized models perform well in testing even with a single data configuration,
likely due to the similarity between training and testing tasks. Future work will explore more challenging
scenarios with increased heterogeneity within the fine-tuning data.

While studies like McCabe et al. (2023) have demonstrated impressive outperformance from fine-tuning of
pretrained models versus randomly initialized models, these fine-tuning tests were performed on data that,
while distinct, was fully governed by physical equations and characterized by physical variables that were
represented in the training data. Yet for a model that aims to be foundational for multiphysical systems,
we argue that assessing model performance in more realistic settings, where equations like Navier-Stokes
are coupled with those from other domains of physics, is a more informative test of the effectiveness of
pretraining. Accordingly, we assess fine-tuning performance on physical systems that incorporate fluid flows,
which are well-represented in PDEBench, with thermodynamics and electromagnetism, which are not. As
reasonably anticipated, we find that advantages of pretraining are reduced in this more complex setting.

5 Conclusion

In this paper, we make three contributions that will advance the development of foundation models for
multiscale physical systems. First, we find that while some data efficiency is lost in a fully decoupled
spatiotemporal attention scheme such as AViT, SViT provides an intriguing balance of computational and
data efficiency versus the standard ViT approach. Yet using SViT alone does not sufficiently address the
computational challenges associated with attention for high spatial resolutions. Second, we instead suggest
that our adaptive tokenization scheme provides a promising approach for working with high resolution data.
This sort of adaptivity has the potential to be both flexible and expressive enough to deal with the dynamic
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True at t = 1400 prepost_INIT prepost all_INIT all

0.000.250.500.751.001.251.501.752.002.25

Figure 14: Contours of true horizontal magnetic field values Bx vs predicted solutions from four fine-tuned
models (on 12 trajectories) at t “ 1400 from Ti-SViT models for a lead time of 80 in lid-driven cavity MHD
flows.

and sparse nature of the multiscale features in physical data. Third, we suggest an alternative path to
evaluate foundation models for multiscale physical systems that focuses on fine-tuning problems involving
out-of-distribution physics governed by different equations with distinct sets of physical variables. In two
such settings, colliding thermals and magnetohydrodynamics, we find that while pretraining does provide an
advantage, its impact is much more muted compared to fine-tuning on the same set of variables, suggesting
additional effort is required to obtain truly foundational models in this space.

This work focused on demonstrating the effectiveness of our approach in 2D systems. Future directions
include moving toward real-world applications with larger model sizes using high-resolution 3D data. In
these directions, the computational challenges considered here will only increase, especially the substantially
longer sequence lengths associated with 3D systems. Both adaptive tokenization methods introduced here,
in combination with compatible spatiotemporal attention schemes like SViT, can play a significant role in
moderating the additional computational costs in these regimes. However, as sequence lengths move into
the millions or more, additional techniques such as parallelizing a sequence across multiple GPUs will be
necessary as well.

Broader Impact Statement

This study presents fundamental algorithms designed to advance transformer-based spatiotemporal founda-
tion models. These models are trained and tested on both open-source and in-house 2D simulation data from
PDE systems, representing basic SciML research. The in-house data will be released upon paper publica-
tion. At this proof-of-concept stage, the models pose minimal risk and have the negligible negative societal
impacts.

Our long-term objective is to develop Multiscale AdapTivE trustworthY (MATEY) transformer-based mod-
els for real-world multiscale physical systems such as propulsion, energy generation, and earth sciences.
Developing models for such applications makes trustworthiness — specifically, the model’s accuracy and
reliability, robustness, and resilience (ARRR) — a primary concern. While this paper demonstrates an early
proof-of-concept demonstration toward that goal, the models are not yet deployed in practical applications.
To facilitate transparency and reproducibility, and to help reduce potential bias in data and implementations,
we will make our codebase, datasets, and experimental settings open source upon publication.
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A Appendix

A.1 Datasets

Three datasets were used in the work: PDEBench (Takamoto et al., 2022), colliding thermals (Norman,
2024), and lid-driven cavity MHD flows.

• PDEBench (https://github.com/pdebench/PDEBench) consists of diverse 1D, 2D, and 3D diverse
benchmark datasets. We used the 2D cases – incompressible flows, compressible flows, turbulent
flows, reaction diffusion, and shallow water – for model pretraining in Section 4.3. The governing
equations are summarized below.

– Shallow water equations [swe]:
Bth ` ∇ ¨ phvq “ 0,

Btphvq ` ∇ ¨

ˆ

1
2hv2 `

1
2grh2

˙

“ ´grh∇b

– Diffusion-reaction equations [diffre2d]:

Btc “ D∇2c ` Rpcq, .

where ξ and ϕ in c “ rξ, ϕs are the activator and the inhibitor, respectively.
– Incompressible NS [Incomp]:

∇ ¨ v “ 0,

ρ pBtv ` v ¨ ∇vq “ ´∇p ` η∇2v ` f

– Compressible NS [compNS] with random and turbulent initial conditions:

Btρ ` ∇ ¨ pρvq “ 0,

ρ pBtv ` v ¨ ∇vq “ ´∇p ` η∇2v ` pζ ` η{3q∇p∇ ¨ vq

Bt

„

ϵ `
ρv2

2

ȷ

` ∇ ¨

„ˆ

ϵ ` p `
ρv2

2

˙

v ´ v ¨ σ1

ȷ

“ 0

with ϵ “ p{Γ ´ 1 and Γ “ 5{3.

For more details on these cases and equations, users are referred to(Takamoto et al., 2022).

• The colliding thermals dataset was generated for our work, and the details will be presented in
Section A.1.1. It was used in the experiments in Sections 4.1 and 4.2, and also as one of the two
fine-tuning cases in Section 4.3.

• Lid-driven cavity MHD dataset was also generated in our work, and it was used as the other fine-
tuning case in Section 4.3. We will present the details in Section A.1.2.

A.1.1 Colliding thermals

Thermal collision datasets contains multiple time history trajectories of the mixing of two bubbles-one cold
bubble at the top colliding with a warm bubble at the bottom. Details about the governing equations can
be found in Norman (2024). These trajectories start from different initial temperature conditions as

T0px, zq “ 300.0 ` T10px, zq ` T20px, zq, (13)

with one hot T10 and cold T20 thermals being

T10px, zq “

"

Tc1 cos
`

π
2 d1px, zq

˘2
, if d1px, zq ď 1

0, otherwise (14)
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and
T20px, zq “

"

´Tc2 cos
`

π
2 d2px, zq

˘2
, if d2px, zq ď 1

0, otherwise (15)

where Tci is the center temperature amplitude and dipx, zq “

b

px´xciq2

rx2
i

`
pz´zciq2

rz2
i

is the distance from
thermal center (xci, zci) for i “ 1, 2. The thermals are elliptical in shape with the radius, rxi and rzi, in x
and z directions, respectively.

Configurations We sample 4096 configurations with the thermals (i “ 1, 2) at different locations following
uniform distribution,

xci „ U r0.2L, 0.8Ls, zc1 „ U r0.2L, 0.3Ls, and zc2 „ U r0.7L, 0.8Ls, (16)

with different elliptical shapes also following uniform distribution,

rxi „ U r0.1L, 0.2Ls and rzi „ U r0.1L, 0.2Ls, (17)

and with temperature amplitudes equally sampled from,

Tci „ Ct10, 15, 20, 25u. (18)

The equations are solved by using a finite volume method with nx “ 256, ny “ 256 grid points in x and z
directions, respectively. The simulations are advanced in time for 500 seconds and solutions are saved every
0.5 second. In total, we have 4096 trajectories, each with data at size (nt “ 1001, nx “ 256, ny “ 256).

A.1.2 Lid-driven cavity magnetohydrodynamics (MHD) flows

The MHD dataset contains solution trajectories from initial conditions to steady states for a benchmark lid-
driven cavity MHD flow problem in two dimensions with varying configurations. The MHD flow is governed
by an incompressible Navier-Stokes equation with Lorentz force coupled with an induction equation with
divergence cleaning. The detail formulation of the governing equations and problem setting for the lid-driven
MHD cavity problem are given in Fambri et al. (2023).

Configurations In this dataset, we include solution trajectories of the lid-driven cavity problem at three
magnetic Reynolds numbers Rem “ 100, 200, and 500, each with ten external horizontal magnetic field
magnitude Bx “ 0.05, 0.10, . . . , 0.50. This gives 30 different problem configurations. For each problem
configuration, the fluid velocity field v and the magnetic field B are recorded on a 128ˆ128 uniform spatial
mesh for 2,000 time steps.

A.2 More on spatiotemporal attentions and adaptive tokenization

Training setting We randomly sampled a subset with 512 trajectories for training and 64 trajectories for
testing for the results in Sections 4.1 and 4.2. During training, we use the AdamW optimizer with a learning
rate equal to 10´4. Batch size was set to be 128 and accumulate gradient step was set to be 1. Models were
trained for 20,000 steps. For cases with constant patch size, the value was set to be 32 ˆ 32. Cases with a
single trajectory was trained for 15000 steps with batch size 40 for faster hyperparameter sweeps. In MSViT
cases, we used a Gaussian hyperprior distribution with standard deviation being 0.1 and a relaxed Bernolli
prior distribution with temperature being 0.3. The loss weight hyperparameter λ was set to be 10.

For the experiment on spatotemporal attention schemes in Section 4.1, we ran 9 cases with AViT, SViT,
and ViT attention blocks at three sizes (Ti, S, and B). Figure A1 shows the loss history during training of
the models for both training and test sets, and Figure A2 shows the training time cost.

For the experiment on adaptive tokenization in Section 4.2, Figures A3, A4, and A5 show the training losses
of all models in a single colliding thermal trajectory for Figures 5, 6, and 7, respectively. Figures A6 and A7
show the training losses and gate losses, respectively, of all MSViT models in Figure 8. Figures A8 and A9
plot the training losses of all models in multiple colliding trajectories for Figures 9 and 10, respectively.
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Figure A1: Loss history of three spatiotemporal attention schemes at three model sizes during training
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Figure A2: Training time per step of three spatiotemporal attention schemes at three model sizes

A.3 Pretraining and fine-tuning

A.3.1 Pretraining

Five 2D datasets from PDEBench Takamoto et al. (2022) were used for pretraining, including shallow water,
diffusion reaction, incompressible flows, compressible flows, and turbulent flows. The details of these datasets
including physical variables, spatiotemporal resolutions, and number of trajectories are summarized in Table
A4.

During training, we used the AdamW optimizer with DAdaptAdam for learning rate scheduling. Batch size
was set to be 1472 and patch size was 32 ˆ 32. Training/testing/validating split was 0.8/0.1/0.1. Gradient
accumulation was set to be 1. We trained the model for 30,000 steps to predict the next step solution given
a history of T “ 16.

A.3.2 Fine-tuning

For fine-tuning, we evaluate the transferrability of pretrained models to systems with distinct physics and
different sets of variables. Table A4 summarizes the two fine-tuning cases: colliding thermals and lid-driven
cavity MHD flows. In the two cases, pretrained models were fine-tuned to predict the solution at a future
time t ` tlead given a history of solutions from t ´ T ` 1 to t. In our experiments, T was set to be 10 while
tlead was set to 50 for the colliding thermals and 100 for the lid-driven cavity MHD flows. The fine-tuned
models were evaluated on a held-out test set for all runs in each case. We used the AdamW optimizer with a
learning rate equal to 10´4. Batch size was set to be 256. Models were fine-tuned for 600 epochs for colliding
thermals and 1000 epochs for lid=drive cavity MHD flows.

Colliding thermals We sampled 1, 6, 12, and 24 trajectories for training. The results in Section 4.3 are
shown for a fixed test set with 24 trajectories.
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Figure A3: Comparison of training loss histories of models with adaptive tokenization Adap_Mix and
constant patch sizes (ps=32 ˆ 32, ps=16 ˆ 16, and ps=8 ˆ 8) for the two spatiotemporal attention schemes
(ViT and SViT) in a single colliding thermals trajectory.

Model Metric ps=8ˆ8 ps=16ˆ16 ps=32ˆ32 (32, 16, 0.8) (32, 16, 0.5) (32, 16, 0.3) (32, 16, 0.2) (32, 16, 0.1) (32, 16, 0.05) (32, 16, 0.0) (16, 8, 0.3) (16, 8, 0.2) (16, 8, 0.1) (16, 8, 0.05) (16, 8, 0.02) (16, 8, 0.01) (16, 8, 0.0)

Ti-ViT-Adap_Mix
Lavg,mix 1024 256 64 75 89 101 115 141 186 256 324 350 427 555 691 815 1024
NRMSE 6.57e-03 1.04e-02 1.69e-02 1.47e-02 1.33e-02 1.17e-02 1.10e-02 9.75e-03 1.02e-02 1.10e-02 9.04e-03 9.00e-03 7.86e-03 7.01e-03 6.17e-03 6.39e-03 6.48e-03

Ti-SViT-Adap_Mix
Lavg,mix 1024 256 64 75 89 101 115 141 186 256 324 350 427 555 691 815 1024
NRMSE 5.89e-03 9.94e-03 1.63e-02 1.55e-02 1.20e-02 1.17e-02 1.08e-02 9.10e-03 9.48e-03 9.66e-03 8.31e-03 8.02e-03 7.00e-03 6.16e-03 6.25e-03 5.89e-03 5.85e-03

Table A1: Comparison of NRMSE and average sequence length Lavg,mix for Adap_Mix in ViT and SViT.

Lid-driven cavity MHD flows Among the 30 cases, we kept 6 for testing. From the remaining 24 cases,
we sampled 1, 3, 6, and 12 cases to assess the impact of the amount of fine-tuning data.
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Model Metric (16, 8, 0.05) (32, 16, 0.05) ps=16ˆ16 (32, 16, 0.0) (16, 8, 0.02) (16, 8, 0.1) ps=32ˆ32 (16, 8, 0.3) (16, 8, 0.0) (32, 16, 0.2) (16, 8, 0.01) (32, 16, 0.5) (32, 16, 0.1) (32, 16, 0.3) (32, 16, 0.8) ps=8ˆ8 (16, 8, 0.2)

Ti-ViT-Adap_Mul
Llin 655 227 256 320 836 485 64 347 1280 132 1001 97 167 114 79 1024 382
Lquad 67132 4748 65536 5120 67859 66452 4096 65900 69632 4370 68517 4231 4508 4297 4158 1048576 66040
NRMSE 7.87e-03 1.08e-02 1.02e-02 1.13e-02 7.03e-03 8.67e-03 1.61e-02 9.85e-03 7.88e-03 1.28e-02 6.95e-03 1.36e-02 1.20e-02 1.21e-02 1.39e-02 7.06e-03 9.33e-03

Ti-SViT-Adap_Mul
Llin 655 227 256 320 836 485 64 347 1280 132 1001 97 167 114 79 1024 382
Lquad 67132 4748 65536 5120 67859 66452 4096 65900 69632 4370 68517 4231 4508 4297 4158 1048576 66040
NRMSE 7.43e-03 9.14e-03 9.94e-03 1.03e-02 6.66e-03 8.29e-03 1.63e-02 9.25e-03 7.69e-03 1.02e-02 6.49e-03 1.24e-02 1.07e-02 1.27e-02 1.37e-02 5.89e-03 9.14e-03

Table A2: Comparison of NRMSE, Llin, and Lquad for Adap_Mul in ViT and SViT.

Model Metric ps=8ˆ8 ps=16ˆ16 ps=32ˆ32 (32, 16, g‹
“ 0.1) (32, 16, g‹

“ 0.5) (32, 16, g‹
“ 0.9) (16, 8, g‹

“ 0.1) (16, 8, g‹
“ 0.5) (16, 8, g‹

“ 0.9)

Ti-ViT-MSViT
Lavg,mix 1024 256 64 64 157 253 259 637 1018
NRMSE 6.57e-03 1.04e-02 1.69e-02 1.78e-02 1.33e-02 1.05e-02 1.28e-02 9.57e-03 6.71e-03

Table A3: Comparison of NRMSE and average sequence length Lavg,mix for MSViT together with constant
patch size.
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Figure A4: Comparison of training loss histories of models with adaptive tokenization Adap_Mul and
constant patch sizes (ps=32 ˆ 32, ps=16 ˆ 16, and ps=8 ˆ 8) for the three spatiotemporal attention schemes
(ViT and SViT) in a single colliding thermals trajectory.
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Figure A5: Comparison of training loss histories of models with adaptive tokenization Adap_Mul and
constant patch sizes (ps=32ˆ32, ps=16ˆ16, and ps=8ˆ8) for AViT in a single colliding thermals trajectory.
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Figure A6: Comparison of training loss histories of models with adaptive tokenization MSViT (Havtorn
et al., 2023) with ViT in a single colliding thermals trajectory.
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Figure A7: Training history of gate loss, prior loss, and hyperprior loss of MSViT with ViT in a single
colliding thermals trajectory. The hyperparameter λ in Equation (6) of (Havtorn et al., 2023) was set to be
10 and hence , total training loss = loss_for_prediction + gate_loss=loss_for_prediction + 10*(prior_loss
+ hyperprior_loss).
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Figure A8: Comparison of training loss histories of models with adaptive tokenization Adap_Mix and
constant patch sizes (ps=32 ˆ 32 and ps=16 ˆ 16) for the two spatiotemporal attention schemes (ViT and
SViT) in multiple colliding thermals trajectories.
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Figure A9: Comparison of training loss histories of models with adaptive tokenization Adap_Mul and
constant patch sizes (ps=32 ˆ 32 and ps=16 ˆ 16) for the three spatiotemporal attention schemes (ViT,
SViT, and AViT) in multiple colliding thermals trajectories.

Table A4: Cases and datasets

Pretraining: PDEBench Takamoto et al. (2022)

Dataset Variables (C) Spatiotemporal res. (T ˆ H ˆ W ) Ntraj trajectories
Shallow-water h 101 ˆ 128 ˆ 128 1,000
Diffusion-reaction [diffre2d] ξ, ϕ 101 ˆ 128 ˆ 128 1,000
Incompressible NS u, v, ρaug 1000 ˆ 512 ˆ 512 992
Compressible NS Rand-128 u, v, ρ, P 21 ˆ 128 ˆ 128 40,000
Compressible NS Rand-512 u, v, ρ, P 21 ˆ 512 ˆ 512 2,000
Compressible NS Turb u, v, ρ, P 21 ˆ 512 ˆ 512 2,000

Fine-tuning: colliding thermals (Section A.1.1) and lid-driven MHD (Section A.1.2)

Dataset Variables (C) Spatiotemporal res. (T ˆ H ˆ W ) Ntraj trajectories in training
colliding thermals ρ, u, v, T 1001 ˆ 256 ˆ 256 [1, 6, 12, 24, 48]
lid-driven MHD u, v, Bx, By 2000 ˆ 128 ˆ 128 [1, 3, 6, 12, 24]
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